Results of the SBM-RGBD Challenge @ RGBD2017
Methods are ordered by date of arrival. Click on the method name for details.
A) Average results on the whole dataset
Method Name | Recall | Specificity | FPR | FNR | PWC | Precision | F-Measure |
RGBD-SOBS
[1] | 0.8391 | 0.9958 | 0.0042 | 0.0895 | 1.0828 | 0.8796 | 0.8557 |
RGB-SOBS
[2] | 0.7707 | 0.9708 | 0.0292 | 0.1578 | 5.4010 | 0.7247 | 0.7068 |
SRPCA
[3] | 0.7786 | 0.9739 | 0.0261 | 0.1499 | 3.1911 | 0.7474 | 0.7472 |
AvgM-D
[4] | 0.7065 | 0.9869 | 0.0131 | 0.2221 | 2.8848 | 0.7498 | 0.7157 |
Kim
[5] | 0.8493 | 0.9947 | 0.0053 | 0.0793 | 1.0292 | 0.8764 | 0.8606 |
SCAD
[6] | 0.8847 | 0.9932 | 0.0068 | 0.0439 | 0.9088 | 0.8698 | 0.8757 |
cwisardH+
[7] | 0.7622 | 0.9817 | 0.0183 | 0.1664 | 2.8806 | 0.7556 | 0.7470 |
MFCN
[8] | 0.9186 | 0.9984 | 0.0016 | 0.0100 | 0.2373 | 0.9103 | 0.9143 |
BSABU
[9] | 0.8211 | 0.9955 | 0.0045 | 0.1075 | 1.0854 | 0.8795 | 0.8477 |
DMSN (SDE)
[10] | 0.8936 | 0.9994 | 0.0006 | 0.0350 | 0.4896 | 0.9209 | 0.9067 |
DMSN (SIE)
[10] | 0.6605 | 0.9918 | 0.0082 | 0.2681 | 4.7041 | 0.8116 | 0.6913 |
B) Average results for each category
Method Name | Recall | Specificity | FPR | FNR | PWC | Precision | F-Measure |
Bootstrapping |
RGBD-SOBS | 0.8842 | 0.9925 | 0.0075 | 0.1158 | 2.3270 | 0.9080 | 0.8917 |
RGB-SOBS | 0.8023 | 0.9814 | 0.0186 | 0.1977 | 4.4221 | 0.8165 | 0.8007 |
SRPCA | 0.7284 | 0.9914 | 0.0086 | 0.2716 | 3.7409 | 0.9164 | 0.8098 |
AvgM-D | 0.4587 | 0.9861 | 0.0139 | 0.5413 | 7.1960 | 0.6941 | 0.5350 |
Kim | 0.8805 | 0.9965 | 0.0035 | 0.1195 | 1.5227 | 0.9566 | 0.9169 |
SCAD | 0.8997 | 0.9940 | 0.0060 | 0.1003 | 1.8015 | 0.9319 | 0.9134 |
cwisardH+ | 0.5727 | 0.9616 | 0.0384 | 0.4273 | 8.1381 | 0.5787 | 0.5669 |
MFCN | 0.9866 | 0.9985 | 0.0015 | 0.0134 | 0.2286 | 0.9885 | 0.9876 |
BSABU | 0.8070 | 0.9954 | 0.0046 | 0.1930 | 1.8163 | 0.9166 | 0.8562 |
DMSN (SDE) | 0.9306 | 0.9991 | 0.0009 | 0.0694 | 1.1234 | 0.9902 | 0.9589 |
DMSN (SIE) | 0.7318 | 0.9748 | 0.0252 | 0.2682 | 6.0063 | 0.8094 | 0.7510 |
ColorCamouflage |
RGBD-SOBS | 0.9563 | 0.9927 | 0.0073 | 0.0437 | 1.2161 | 0.9434 | 0.9488 |
RGB-SOBS | 0.4310 | 0.9767 | 0.0233 | 0.5690 | 16.0404 | 0.8018 | 0.4864 |
SRPCA | 0.8476 | 0.9389 | 0.0611 | 0.1524 | 4.3124 | 0.8367 | 0.8329 |
AvgM-D | 0.9001 | 0.9793 | 0.0207 | 0.0999 | 2.0719 | 0.8096 | 0.8508 |
Kim | 0.9737 | 0.9927 | 0.0073 | 0.0263 | 0.7389 | 0.9754 | 0.9745 |
SCAD | 0.9875 | 0.9904 | 0.0096 | 0.0125 | 0.7037 | 0.9677 | 0.9775 |
cwisardH+ | 0.9533 | 0.9849 | 0.0151 | 0.0467 | 1.1931 | 0.9502 | 0.9510 |
MFCN | 0.9859 | 0.9977 | 0.0023 | 0.0141 | 0.4272 | 0.9893 | 0.9876 |
BSABU | 0.8980 | 0.9923 | 0.0077 | 0.1020 | 1.2333 | 0.9489 | 0.9219 |
DMSN (SDE) | 0.9594 | 0.9995 | 0.0005 | 0.0406 | 1.0580 | 0.9953 | 0.9768 |
DMSN (SIE) | 0.2389 | 0.9982 | 0.0018 | 0.7611 | 17.4555 | 0.7712 | 0.3199 |
DepthCamouflage |
RGBD-SOBS | 0.8401 | 0.9985 | 0.0015 | 0.1599 | 0.9778 | 0.9682 | 0.8936 |
RGB-SOBS | 0.9725 | 0.9856 | 0.0144 | 0.0275 | 1.5809 | 0.8354 | 0.8935 |
SRPCA | 0.8679 | 0.9778 | 0.0222 | 0.1321 | 2.9944 | 0.7850 | 0.8083 |
AvgM-D | 0.8368 | 0.9922 | 0.0078 | 0.1632 | 1.6943 | 0.8860 | 0.8538 |
Kim | 0.8702 | 0.9968 | 0.0032 | 0.1298 | 0.9820 | 0.9433 | 0.9009 |
SCAD | 0.9841 | 0.9963 | 0.0037 | 0.0159 | 0.4432 | 0.9447 | 0.9638 |
cwisardH+ | 0.6821 | 0.9949 | 0.0051 | 0.3179 | 2.4049 | 0.9016 | 0.7648 |
MFCN | 0.9870 | 0.9986 | 0.0014 | 0.0130 | 0.2134 | 0.9741 | 0.9804 |
BSABU | 0.8975 | 0.9985 | 0.0015 | 0.1025 | 0.8171 | 0.9717 | 0.9325 |
DMSN (SDE) | 0.9698 | 0.9996 | 0.0004 | 0.0302 | 0.2262 | 0.9938 | 0.9816 |
DMSN (SIE) | 0.6901 | 0.9954 | 0.0046 | 0.3099 | 2.8522 | 0.9300 | 0.7360 |
IlluminationChanges |
RGBD-SOBS | 0.4514 | 0.9955 | 0.0045 | 0.0486 | 0.9321 | 0.4737 | 0.4597 |
RGB-SOBS | 0.4366 | 0.9715 | 0.0285 | 0.0634 | 3.5022 | 0.4759 | 0.4527 |
SRPCA | 0.4795 | 0.9816 | 0.0184 | 0.0205 | 1.9171 | 0.4159 | 0.4454 |
AvgM-D | 0.3392 | 0.9858 | 0.0142 | 0.1608 | 3.0717 | 0.4188 | 0.3569 |
Kim | 0.4479 | 0.9935 | 0.0065 | 0.0521 | 1.1395 | 0.4587 | 0.4499 |
SCAD | 0.4699 | 0.9927 | 0.0073 | 0.0301 | 0.9715 | 0.4567 | 0.4610 |
cwisardH+ | 0.4707 | 0.9914 | 0.0086 | 0.0293 | 1.0754 | 0.4504 | 0.4581 |
MFCN | 0.4986 | 0.9987 | 0.0013 | 0.0014 | 0.1255 | 0.4912 | 0.4949 |
BSABU | 0.4628 | 0.9905 | 0.0095 | 0.0372 | 1.3139 | 0.4748 | 0.4673 |
DMSN (SDE) | 0.4929 | 0.9992 | 0.0008 | 0.0071 | 0.1598 | 0.4962 | 0.4945 |
DMSN (SIE) | 0.4107 | 0.9948 | 0.0052 | 0.0893 | 1.4433 | 0.4529 | 0.4291 |
IntermittentMotion |
RGBD-SOBS | 0.8921 | 0.9970 | 0.0030 | 0.1079 | 0.8648 | 0.9544 | 0.9202 |
RGB-SOBS | 0.9265 | 0.9028 | 0.0972 | 0.0735 | 9.3877 | 0.4054 | 0.5397 |
SRPCA | 0.8893 | 0.9629 | 0.0371 | 0.1107 | 3.7026 | 0.7208 | 0.7735 |
AvgM-D | 0.8976 | 0.9912 | 0.0088 | 0.1024 | 1.4603 | 0.9115 | 0.9027 |
Kim | 0.9418 | 0.9938 | 0.0062 | 0.0582 | 0.9213 | 0.9385 | 0.9390 |
SCAD | 0.9563 | 0.9914 | 0.0086 | 0.0437 | 0.8616 | 0.9243 | 0.9375 |
cwisardH+ | 0.8086 | 0.9558 | 0.0442 | 0.1914 | 5.0851 | 0.5984 | 0.6633 |
MFCN | 0.9906 | 0.9987 | 0.0013 | 0.0094 | 0.2466 | 0.9836 | 0.9870 |
BSABU | 0.8999 | 0.9973 | 0.0027 | 0.1001 | 0.6916 | 0.9543 | 0.9236 |
DMSN (SDE) | 0.9690 | 0.9993 | 0.0007 | 0.0310 | 0.3548 | 0.9916 | 0.9801 |
DMSN (SIE) | 0.8182 | 0.9972 | 0.0028 | 0.1818 | 1.1730 | 0.9025 | 0.8539 |
OutOfRange |
RGBD-SOBS | 0.9170 | 0.9975 | 0.0025 | 0.0830 | 0.5613 | 0.9362 | 0.9260 |
RGB-SOBS | 0.8902 | 0.9896 | 0.0104 | 0.1098 | 1.3610 | 0.8237 | 0.8527 |
SRPCA | 0.8785 | 0.9878 | 0.0122 | 0.1215 | 1.6100 | 0.7443 | 0.8011 |
AvgM-D | 0.6319 | 0.9860 | 0.0140 | 0.3681 | 2.7663 | 0.6360 | 0.6325 |
Kim | 0.9040 | 0.9961 | 0.0039 | 0.0960 | 0.8228 | 0.9216 | 0.9120 |
SCAD | 0.9286 | 0.9965 | 0.0035 | 0.0714 | 0.5711 | 0.9357 | 0.9309 |
cwisardH+ | 0.8959 | 0.9956 | 0.0044 | 0.1041 | 0.8731 | 0.9038 | 0.8987 |
MFCN | 0.9917 | 0.9982 | 0.0018 | 0.0083 | 0.2018 | 0.9613 | 0.9763 |
BSABU | 0.8532 | 0.9967 | 0.0033 | 0.1468 | 1.0470 | 0.9110 | 0.8806 |
DMSN (SDE) | 0.9717 | 0.9996 | 0.0004 | 0.0283 | 0.1738 | 0.9883 | 0.9799 |
DMSN (SIE) | 0.9250 | 0.9954 | 0.0046 | 0.0750 | 0.7642 | 0.9319 | 0.9275 |
Shadows |
RGBD-SOBS | 0.9323 | 0.9970 | 0.0030 | 0.0677 | 0.7001 | 0.9733 | 0.9500 |
RGB-SOBS | 0.9359 | 0.9881 | 0.0119 | 0.0641 | 1.5128 | 0.9140 | 0.9218 |
SRPCA | 0.7592 | 0.9768 | 0.0232 | 0.2408 | 4.0602 | 0.8128 | 0.7591 |
AvgM-D | 0.8812 | 0.9876 | 0.0124 | 0.1188 | 1.9330 | 0.8927 | 0.8784 |
Kim | 0.9270 | 0.9934 | 0.0066 | 0.0730 | 1.0771 | 0.9404 | 0.9314 |
SCAD | 0.9665 | 0.9910 | 0.0090 | 0.0335 | 1.0093 | 0.9276 | 0.9458 |
cwisardH+ | 0.9518 | 0.9877 | 0.0123 | 0.0482 | 1.3942 | 0.9062 | 0.9264 |
MFCN | 0.9893 | 0.9983 | 0.0017 | 0.0107 | 0.2178 | 0.9842 | 0.9867 |
BSABU | 0.9290 | 0.9979 | 0.0021 | 0.0710 | 0.6788 | 0.9794 | 0.9515 |
DMSN (SDE) | 0.9618 | 0.9993 | 0.0007 | 0.0382 | 0.3310 | 0.9910 | 0.9754 |
DMSN (SIE) | 0.8087 | 0.9868 | 0.0132 | 0.1913 | 3.2344 | 0.8835 | 0.8217 |
References:
[1]L. Maddalena and A. Petrosino,
Exploiting Color and Depth for Background Subtraction, in Battiato S., Farinella G., Leo M., Gallo G. (eds) New Trends in Image Analysis and Processing - ICIAP 2017.
Lecture Notes in Computer Science, vol 10590, Springer, pp. 254--265, 2017.
[2]
L. Maddalena, A. Petrosino, The SOBS algorithm: What are the limits?,
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.21-26, 16-21 June 2012.
[3]S. Javed, T. Bouwmans, M. Sultana and S. K. Jung,
Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA,
in Battiato S., Farinella G., Leo M., Gallo G. (eds) New Trends in Image Analysis and Processing - ICIAP 2017.
Lecture Notes in Computer Science, vol 10590, Springer, pp. 230--241, 2017.
[4] Unpublished.
[5] Unpublished.
[6] T. Minematsu, A. Shimada, H. Uchiyama and R.-i. Taniguchi,
Simple Combination of Appearance and Depth for Foreground Segmentation,in Battiato S., Farinella G., Leo M., Gallo G. (eds) New Trends in Image Analysis and Processing - ICIAP 2017.
Lecture Notes in Computer Science, vol 10590, Springer, pp. 266--277, 2017.
[7] M. De Gregorio and M. Giordano,
CwisarDH+: Background Detection in RGBD Videos by Learning of Weightless Neural Networks,
in Battiato S., Farinella G., Leo M., Gallo G. (eds) New Trends in Image Analysis and Processing - ICIAP 2017.
Lecture Notes in Computer Science, vol 10590, Springer, pp. 245--253, 2017.
[8] D. Zeng and M. Zhu,
Background Subtraction Using Multiscale Fully Convolutional Network,
IEEE Access 2018.
[9] N. Dorudian, S. Lauria, S. Swift, Moving Object Detection Using Adaptive Blind Update and RGB-D Camera, IEEE Sensors Journal 19(18), 2019.
[10] I. Houhou, A. Zitouni, Y. Ruichek, SE. Bekhouche, M. Kas, A. Taleb-Ahmed, RGBD deep multi-scale network for background subtraction, International Journal of Multimedia Information Retrieval, vol.11, pp.395-407, May, 2022.