Method cwisardH+ on the SBM-RGBD dataset
Contact name: Maurizio Giordano
Contact email: maurizio.giordano@cnr.it
Contact Institution: high performance computing and networking - CNR
Method webpage: coming soon
Method processing time: ~8 fps (Train) ~2 fps (Classify) on a 4 GHz Intel Core i7 (OpenMP)
Method parameters: -k 0:0 -t 0.70:0.70 -z 64:128 -b 4:16 -O 1:1:1:1)
Reference: M. De Gregorio and M. Giordano,
CwisarDH+: Background Detection in RGBD Videos by Learning of Weightless Neural Networks,
in Battiato S., Farinella G., Leo M., Gallo G. (eds) New Trends in Image Analysis and Processing - ICIAP 2017.
Lecture Notes in Computer Science, vol 10590, Springer, pp. 245--253, 2017.
Get all result files:
here.
A) Sequence-by-sequence results
Name | Recall | Specificity | FPR | FNR | PWC | Precision | F-Measure |
Bootstrapping |
BootStrapping_ds | 0.9426 | 0.9875 | 0.0125 | 0.0574 | 1.6659 | 0.8845 | 0.9126 |
adl24cam0 | 0.3310 | 0.9579 | 0.0421 | 0.6690 | 8.0174 | 0.3366 | 0.3338 |
bear_front | 0.4344 | 0.9349 | 0.0651 | 0.5656 | 19.6902 | 0.7045 | 0.5374 |
fall01cam0 | 0.6510 | 0.9739 | 0.0261 | 0.3490 | 4.4015 | 0.5949 | 0.6217 |
fall20cam0 | 0.5044 | 0.9540 | 0.0460 | 0.4956 | 6.9155 | 0.3732 | 0.4290 |
ColorCamouflage |
Cespatx_ds | 0.9826 | 0.9992 | 0.0008 | 0.0174 | 0.1163 | 0.9615 | 0.9719 |
Hallway | 0.8379 | 0.9962 | 0.0038 | 0.1621 | 1.2094 | 0.9235 | 0.8786 |
colorCam1 | 0.9938 | 0.9908 | 0.0092 | 0.0062 | 0.8509 | 0.9690 | 0.9812 |
colorCam2 | 0.9988 | 0.9535 | 0.0465 | 0.0012 | 2.5959 | 0.9469 | 0.9722 |
DepthCamouflage |
DCamSeq1 | 0.7005 | 0.9973 | 0.0027 | 0.2995 | 1.9267 | 0.9389 | 0.8024 |
DCamSeq2 | 0.4279 | 0.9962 | 0.0038 | 0.5721 | 2.8621 | 0.8391 | 0.5668 |
Despatx_ds | 0.9839 | 0.9942 | 0.0058 | 0.0161 | 0.6787 | 0.9449 | 0.9640 |
Wall | 0.6162 | 0.9920 | 0.0080 | 0.3838 | 4.1520 | 0.8836 | 0.7261 |
IlluminationChanges |
ChairBox | 0.8831 | 0.9966 | 0.0034 | 0.1169 | 1.5766 | 0.9694 | 0.9242 |
Ls_ds | 0.0000 | 0.9999 | 0.0001 | 0.0000 | 0.0108 | 0.0000 | 0.0000 |
TimeOfDay_ds | 0.0000 | 0.9983 | 0.0017 | 0.0000 | 0.1718 | 0.0000 | 0.0000 |
genSeq1 | 0.9997 | 0.9710 | 0.0290 | 0.0003 | 2.5425 | 0.8323 | 0.9083 |
IntermittentMotion |
Shelves | 0.7475 | 0.9984 | 0.0016 | 0.2525 | 0.6503 | 0.9038 | 0.8182 |
Sleeping_ds | 0.9307 | 0.9117 | 0.0883 | 0.0693 | 8.4413 | 0.7281 | 0.8170 |
abandoned1 | 0.9795 | 0.9823 | 0.0177 | 0.0205 | 1.7793 | 0.5865 | 0.7337 |
abandoned2 | 0.9988 | 0.9877 | 0.0123 | 0.0012 | 1.0981 | 0.9179 | 0.9566 |
movedBackground1 | 0.9314 | 0.9702 | 0.0298 | 0.0686 | 3.0378 | 0.3192 | 0.4754 |
movedBackground2 | 0.2640 | 0.8847 | 0.1153 | 0.7360 | 15.5038 | 0.1352 | 0.1789 |
OutOfRange |
MultiPeople1 | 0.9206 | 0.9930 | 0.0070 | 0.0794 | 1.2660 | 0.9179 | 0.9192 |
MultiPeople2 | 0.9014 | 0.9964 | 0.0036 | 0.0986 | 1.1326 | 0.9572 | 0.9285 |
TopViewLab1 | 0.9462 | 0.9958 | 0.0042 | 0.0538 | 0.5833 | 0.8863 | 0.9153 |
TopViewLab2 | 0.9506 | 0.9956 | 0.0044 | 0.0494 | 0.6157 | 0.8958 | 0.9224 |
TopViewLab3 | 0.7608 | 0.9974 | 0.0026 | 0.2392 | 0.7681 | 0.8619 | 0.8082 |
Shadows |
Shadows_ds | 0.9795 | 0.9953 | 0.0047 | 0.0205 | 0.5702 | 0.9300 | 0.9541 |
fall01cam1 | 0.7870 | 0.9947 | 0.0053 | 0.2130 | 1.8362 | 0.9092 | 0.8437 |
genSeq2 | 0.9979 | 0.9869 | 0.0131 | 0.0021 | 1.1832 | 0.9056 | 0.9495 |
shadows1 | 0.9980 | 0.9830 | 0.0170 | 0.0020 | 1.4885 | 0.9055 | 0.9495 |
shadows2 | 0.9969 | 0.9786 | 0.0214 | 0.0031 | 1.8931 | 0.8806 | 0.9352 |
B) Average results for each category
Name | Recall | Specificity | FPR | FNR | PWC | Precision | F-Measure |
Bootstrapping | 0.5727 | 0.9616 | 0.0384 | 0.4273 | 8.1381 | 0.5787 | 0.5669 |
ColorCamouflage | 0.9533 | 0.9849 | 0.0151 | 0.0467 | 1.1931 | 0.9502 | 0.9510 |
DepthCamouflage | 0.6821 | 0.9949 | 0.0051 | 0.3179 | 2.4049 | 0.9016 | 0.7648 |
IlluminationChanges | 0.4707 | 0.9914 | 0.0086 | 0.0293 | 1.0754 | 0.4504 | 0.4581 |
IntermittentMotion | 0.8086 | 0.9558 | 0.0442 | 0.1914 | 5.0851 | 0.5984 | 0.6633 |
OutOfRange | 0.8959 | 0.9956 | 0.0044 | 0.1041 | 0.8731 | 0.9038 | 0.8987 |
Shadows | 0.9518 | 0.9877 | 0.0123 | 0.0482 | 1.3942 | 0.9062 | 0.9264 |
AVG. | 0.7622 | 0.9817 | 0.0183 | 0.1664 | 2.8806 | 0.7556 | 0.7470 |